Estimating the spatial autocorrelation function for ultrasound scatterers in isotropic media.
نویسندگان
چکیده
The autocorrelation function pertaining to spatial distributions of ultrasonic scatterers in soft tissue is believed to contain useful information related to tissue morphology. A simple processing method applied to radio-frequency echo signals estimates this function for a sample having isotropic scattering conditions. It utilizes backscattered echo signals from the sample and echo signals from a reference object having defined scattering properties. The ratio of the echo signal power spectrum from the sample to the echo signal power spectrum from the reference object is obtained, and corrected for attenuation differences between the two media. This yields a "form factor" for the sample, whose inverse Fourier transform is the autocorrelation function. The method was tested using tissue-mimicking samples for which spatial autocorrelation functions could be modeled from the dimensions of embedded scatterers. The shapes of the measured autocorrelation functions were in reasonable agreement with those estimated, although measured functions overestimated the function at small lag distances. Scatterer diameters estimated from the zeros of the autocorrelation function agreed to within 6% of expected values when the measurement system bandwidth satisfied minimal criteria.
منابع مشابه
Mean-scatterer spacing estimates with spectral correlation.
An ultrasonic backscattered signal from material comprised of quasiperiodic scatterers exhibit redundancy over both its phase and magnitude spectra. This paper addresses the problem of estimating mean-scatterer spacing from the backscattered ultrasound signal using spectral redundancy characterized by the spectral autocorrelation (SAC) function. Mean-scatterer spacing estimates are compared for...
متن کاملWave Equations in Transversely Isotropic Media in Terms of Potential Functions (RESEARCH NOTE)
A complete series of potential functions for solving the wave equations in an almost transversely isotropic media is presented. The potential functions are reduced to only one potential function particularly for axisymmetric wave propagation problems. The potential functions presented in this paper can be reduced to Lekhnitskii-Hu-Nowacki solution for elastostatics problems.
متن کاملNew method for estimation of the scale of fluctuation of geotechnical properties in natural deposits
One of the main distinctions between geomaterials and other engineering materials is the spatial variation of their properties in different directions. This characteristic of geomaterials -so called heterogeneity- is studied herewith. Several spatial distributions are introduced to describe probabilistic variation of geotechnical properties of soils. Among all, the absolute normal distribution ...
متن کاملScatterer size estimation in pulse-echo ultrasound using focused sources: theoretical approximations and simulation analysis.
The speckle in ultrasound images has long been thought to contain information related to the tissue microstructure. Many different investigators have analyzed the frequency characteristics of the backscattered signals to estimate the scatterer acoustic concentration and size. Previous work has been mostly restricted to unfocused or weakly focused ultrasound sources, thus limiting its implementa...
متن کاملAutocorrelation of scattered laser light for ultrasound-modulated optical tomography in dense turbid media.
Based on measurement of the intensity autocorrelation function, a new method to determine the modulation depth of scattered laser light modulated by an ultrasonic wave in turbid media was applied to ultrasound-modulated optical tomography. Good signal-to-noise ratios and high sensitivities were demonstrated. Images of double optically absorbing objects buried in a highly optically scattering ge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Medical physics
دوره 25 5 شماره
صفحات -
تاریخ انتشار 1998